A generalized dimension-reduction method for multidimensional integration in stochastic mechanics
نویسندگان
چکیده
A new, generalized, multivariate dimension-reduction method is presented for calculating statistical moments of the response of mechanical systems subject to uncertainties in loads, material properties, and geometry. The method involves an additive decomposition of an N -dimensional response function into at most S-dimensional functions, where S>N ; an approximation of response moments by moments of input random variables; and a moment-based quadrature rule for numerical integration. A new theorem is presented, which provides a convenient means to represent the Taylor series up to a specific dimension without involving any partial derivatives. A complete proof of the theorem is given using two lemmas, also proved in this paper. The proposed method requires neither the calculation of partial derivatives of response, as in commonly used Taylor expansion/perturbation methods, nor the inversion of random matrices, as in the Neumann expansion method. Eight numerical examples involving elementary mathematical functions and solid-mechanics problems illustrate the proposed method. Results indicate that the multivariate dimension-reduction method generates convergent solutions and provides more accurate estimates of statistical moments or multidimensional integration than existing methods, such as firstand second-order Taylor expansion methods, statistically equivalent solutions, quasi-Monte Carlo simulation, and the fully symmetric interpolatory rule. While the accuracy of the dimension-reduction method is comparable to that of the fourth-order Neumann expansion method, a comparison of CPU time suggests that the former is computationally far more efficient than the latter. Copyright 2004 John Wiley & Sons, Ltd.
منابع مشابه
A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics
This paper presents a new, univariate dimension-reduction method for calculating statistical moments of response of mechanical systems subject to uncertainties in loads, material properties, and geometry. The method involves an additive decomposition of a multi-dimensional response function into multiple one-dimensional functions, an approximation of response moments by moments of single random...
متن کاملMultidimensional fuzzy finite tree automata
This paper introduces the notion of multidimensional fuzzy finite tree automata (MFFTA) and investigates its closure properties from the area of automata and language theory. MFFTA are a superclass of fuzzy tree automata whose behavior is generalized to adapt to multidimensional fuzzy sets. An MFFTA recognizes a multidimensional fuzzy tree language which is a regular tree language so that for e...
متن کاملWilson wavelets for solving nonlinear stochastic integral equations
A new computational method based on Wilson wavelets is proposed for solving a class of nonlinear stochastic It^{o}-Volterra integral equations. To do this a new stochastic operational matrix of It^{o} integration for Wilson wavelets is obtained. Block pulse functions (BPFs) and collocation method are used to generate a process to forming this matrix. Using these basis functions and their operat...
متن کاملDimension reduction via timescale separation in stochastic dynamical systems
We review the development and applications of a systematic framework for dimension reduction in stochastic dynamical systems that exhibit a separation of timescales. When a multidimensional stochastic dynamical system possesses quantities that are approximately conserved on short timescales, it is common to observe on long timescales that trajectories remain close to some lower-dimensional subs...
متن کاملhp-Spectral Finite Element Analysis of Shear Deformable Beams and Plates
There are different finite element models in place for predicting the bending behavior of shear deformable beams and plates. Mostly, the literature abounds with traditional equi-spaced Langrange based low order finite element approximations using displacement formulations. However, the finite element models of Timoshenko beams and Mindlin plates with linear interpolation of all generalized disp...
متن کامل